(正文内容从这里开始…)
快速排序
import random
def partition(nums, start, end):
"""填坑法分区:返回枢轴落点索引"""
pivot = nums[start] # 也可随机:p = random.randint(start, end); nums[start], nums[p] = nums[p], nums[start]
left, right = start, end
while left < right:
# 右侧先找 < pivot 的
while left < right and nums[right] >= pivot:
right -= 1
nums[left] = nums[right] # 右边的小填到左坑
# 左侧再找 > pivot 的
while left < right and nums[left] <= pivot:
left += 1
nums[right] = nums[left] # 左边的大填到右坑
nums[left] = pivot # 枢轴就位
return left
def quicksort(nums, l=0, r=None):
"""原地快速排序(递归)"""
if r is None:
r = len(nums) - 1
if l >= r:
return
mid = partition(nums, l, r)
quicksort(nums, l, mid - 1)
quicksort(nums, mid + 1, r)
def quicksort(nums, start, end):
"""原地快速排序(递归)"""
if start >= end:
return
pivot = nums[start]
left, right = start, end
# 分区:右找小填左坑,左找大填右坑
while left < right:
while left < right and nums[right] >= pivot:
right -= 1
if left < right:
nums[left] = nums[right]
while left < right and nums[left] <= pivot:
left += 1
if left < right:
nums[right] = nums[left]
nums[left] = pivot # 枢轴就位
quicksort(nums, start, left - 1)
quicksort(nums, left + 1, end)
这个方法会在leetcode217.存在重复元素超时
改进快排
import random
from typing import List
def quicksort(a: List[int], l: int, r: int) -> None:
"""改进版原地快速排序(三路划分 + 随机枢轴 + 尾递归优化)"""
while l < r:
# 1) 随机选择枢轴,交换到开头
p = random.randint(l, r)
a[l], a[p] = a[p], a[l]
pivot = a[l]
# 2) 三路划分:[l..lt-1] < pivot, [lt..gt] == pivot, [gt+1..r] > pivot
lt, i, gt = l, l + 1, r
while i <= gt:
if a[i] < pivot:
a[lt], a[i] = a[i], a[lt]
lt += 1
i += 1
elif a[i] > pivot:
a[i], a[gt] = a[gt], a[i]
gt -= 1
else:
i += 1
# 3) 递归较小的一侧,循环处理较大的一侧(尾递归优化)
left_len = lt - 1 - l
right_len = r - (gt + 1)
if left_len < right_len:
if l < lt - 1:
quicksort(a, l, lt - 1)
l = gt + 1
else:
if gt + 1 < r:
quicksort(a, gt + 1, r)
r = lt - 1
```
# 冒泡排序
def bubble_sort(nums):
“””原地冒泡排序;稳定。平均/最坏 O(n^2),最好(近乎有序)可提前终止。”””
n = len(nums)
for i in range(n - 1):
swapped = False
# 相邻比较与交换,内层区间逐步缩短
for j in range(0, n - 1 - i):
if nums[j] > nums[j + 1]:
nums[j], nums[j + 1] = nums[j + 1], nums[j]
swapped = True
if not swapped: # 本轮无交换 -> 已有序
break
return nums
def selection_sort(nums):
“””原地选择排序;不稳定。时间复杂度始终 O(n^2)。”””
n = len(nums)
for i in range(n - 1):
min_idx = i
# 在 [i+1, n) 中找最小元素的位置
for j in range(i + 1, n):
if nums[j] < nums[min_idx]:
min_idx = j
# 只在需要时交换,减少无谓交换次数
if min_idx != i:
nums[i], nums[min_idx] = nums[min_idx], nums[i]
return nums
# 归并排序
def merge_sort(nums):
if len(nums) <= 1:
return nums
mid = len(nums) // 2
left = merge_sort(nums[:mid])
right = merge_sort(nums[mid:])
return merge(left, right)
def merge(left, right):
l, r = 0, 0
res = []
while l < len(left) and r < len(right):
if left[l] <= right[r]:
res.append(left[l])
l += 1
else:
res.append(right[r])
r += 1
res.extend(left[l:])
res.extend(right[r:])
return res